(most can be downloaded from arXiv or idUS)
Some Non-Compactness Results for Locally Homogeneous Contact Metric Manifolds
Antonio Lotta, Verónica Martín-Molina
Results in Mathematics, 77, Article 150 (2022)
https://doi.org/10.1007/s00025-022-01699-0
Generalized Sasakian space forms which are realized as real hypersurfaces in complex space forms
Alfonso Carriazo, Jong Taek Cho, Verónica, Martín-Molina
Mathematics, 8(6), (2020), 873.
https://doi.org/10.3390/math8060873
A classification of totally geodesic and totally umbilical Legendrian submanifolds of (κ,μ)-spaces
Alfonso Carriazo, Verónica Martín-Molina, Luc Vrancken
Null pseudo-isotropic Lagrangian surfaces
Alfonso Carriazo, Verónica Martín-Molina, Luc Vrancken
Colloquium Mathematicum, 150 (2017), 87-101
https://doi.org/10.4064/cm7107s-12-2016
Algebraic approach to the minimum-cost multi-impulse orbit transfer problem
M. Avendano, V. Martín-Molina, J. Martín-Morales, J. Ortigas-Galindo
Journal of Guidance, Control, and Dynamics, 39, (2016), no. 8, 1734-1743
https://doi.org/10.2514/1.G001598
Approximate solutions of the hyperbolic Kepler's equation
M. Avendano, V. Martín-Molina, J. Ortigas-Galindo
Celestial Mech. Dynam. Astronom., 123, (2015), no. 4, 435-451
https://doi.org/10.1007/s10569-015-9645-0
On a remarkable class of paracontact metric manifolds
Verónica Martín-Molina
Int. J. Geom. Methods Mod. Phys.,12 (2015), no. 8, 1560024 (6 pages)
https://doi.org/10.1142/S0219887815600245
Paracontact metric manifolds in the unit tangent sphere bundle
Giovanni Calvaruso, Verónica Martín-Molina
Ann. Mat. Pura Appl. (4), 194 (2015), no.5, 1359-1380
https://doi.org/10.1007/s10231-014-0424-4
The curvature tensor of (κ,μ,ν)-contact metric manifolds
Kadri Arslan, Alfonso Carriazo, Verónica Martín-Molina, Cengizhan Murathan
Monatsh. Math., 177 (2015), no.3, 331-344
https://doi.org/10.1007/s00605-015-0762-3
Local classification and examples of an important class of paracontact metric manifolds
Verónica Martín-Molina
Filomat, 29 (2015), no.3, 507-515
https://doi.org/10.2298/FIL1503507M
Paracontact metric manifolds without a contact metric counterpart
Verónica Martín-Molina
Taiwanese J. Math., 19, (2015), no.1, 175-191
https://doi.org/10.11650/tjm.19.2015.4447
Recent advances in paracontact metric geometry
Giovanni Calvaruso, Verónica Martín-Molina
Int. J. Geom. Methods Mod. Phys., 11, (2014), no. 9, 1460038 (8 pages)
https://doi.org/10.1142/S021988781460038X
Solving Kepler's equation via Smale's α-theory
Martín Avendaño, Verónica Martín-Molina, Jorge Ortigas-Galindo
Celestial Mech. Dynam. Astronom. 119 (2014), 27–44
https://doi.org/10.1007/s10569-014-9545-8
Almost cosymplectic and almost Kenmotsu (κ,μ,ν)-spaces
Alfonso Carriazo, Verónica Martín-Molina
Mediterr. J. Math. 10 (2013), no. 3, 1551-1571
https://doi.org/10.1007/s00009-013-0246-4
Sasaki-Einstein and paraSasaki-Einstein metrics from (κ,μ)-structures
Beniamino Cappelletti Montano, Alfonso Carriazo, Verónica Martín-Molina J. Geom. Phys. 73 (2013) 20–36
https://doi.org/10.1016/j.geomphys.2013.05.001
Optimal inequalities, contact δ-invariants and their applications
Bang-Yen Chen, Verónica Martín-Molina.
Bull. Malays. Math. Sci. Soc. (2) 36(2) (2013), 263–276
Results in Mathematics, 77, Article 150 (2022)
https://doi.org/10.1007/s00025-022-01699-0
Generalized Sasakian space forms which are realized as real hypersurfaces in complex space forms
Alfonso Carriazo, Jong Taek Cho, Verónica, Martín-Molina
Mathematics, 8(6), (2020), 873.
https://doi.org/10.3390/math8060873
A classification of totally geodesic and totally umbilical Legendrian submanifolds of (κ,μ)-spaces
Alfonso Carriazo, Verónica Martín-Molina, Luc Vrancken
Ann. Global Anal. Geom., 54(2), (2018), 173–185
https://doi.org/10.1007/s10455-018-9597-1Null pseudo-isotropic Lagrangian surfaces
Alfonso Carriazo, Verónica Martín-Molina, Luc Vrancken
Colloquium Mathematicum, 150 (2017), 87-101
https://doi.org/10.4064/cm7107s-12-2016
Algebraic approach to the minimum-cost multi-impulse orbit transfer problem
M. Avendano, V. Martín-Molina, J. Martín-Morales, J. Ortigas-Galindo
Journal of Guidance, Control, and Dynamics, 39, (2016), no. 8, 1734-1743
https://doi.org/10.2514/1.G001598
Approximate solutions of the hyperbolic Kepler's equation
M. Avendano, V. Martín-Molina, J. Ortigas-Galindo
Celestial Mech. Dynam. Astronom., 123, (2015), no. 4, 435-451
https://doi.org/10.1007/s10569-015-9645-0
On a remarkable class of paracontact metric manifolds
Verónica Martín-Molina
Int. J. Geom. Methods Mod. Phys.,12 (2015), no. 8, 1560024 (6 pages)
https://doi.org/10.1142/S0219887815600245
Paracontact metric manifolds in the unit tangent sphere bundle
Giovanni Calvaruso, Verónica Martín-Molina
Ann. Mat. Pura Appl. (4), 194 (2015), no.5, 1359-1380
https://doi.org/10.1007/s10231-014-0424-4
The curvature tensor of (κ,μ,ν)-contact metric manifolds
Kadri Arslan, Alfonso Carriazo, Verónica Martín-Molina, Cengizhan Murathan
Monatsh. Math., 177 (2015), no.3, 331-344
https://doi.org/10.1007/s00605-015-0762-3
Local classification and examples of an important class of paracontact metric manifolds
Verónica Martín-Molina
Filomat, 29 (2015), no.3, 507-515
https://doi.org/10.2298/FIL1503507M
Paracontact metric manifolds without a contact metric counterpart
Verónica Martín-Molina
Taiwanese J. Math., 19, (2015), no.1, 175-191
https://doi.org/10.11650/tjm.19.2015.4447
Recent advances in paracontact metric geometry
Giovanni Calvaruso, Verónica Martín-Molina
Int. J. Geom. Methods Mod. Phys., 11, (2014), no. 9, 1460038 (8 pages)
https://doi.org/10.1142/S021988781460038X
Solving Kepler's equation via Smale's α-theory
Martín Avendaño, Verónica Martín-Molina, Jorge Ortigas-Galindo
Celestial Mech. Dynam. Astronom. 119 (2014), 27–44
https://doi.org/10.1007/s10569-014-9545-8
Almost cosymplectic and almost Kenmotsu (κ,μ,ν)-spaces
Alfonso Carriazo, Verónica Martín-Molina
Mediterr. J. Math. 10 (2013), no. 3, 1551-1571
https://doi.org/10.1007/s00009-013-0246-4
Sasaki-Einstein and paraSasaki-Einstein metrics from (κ,μ)-structures
Beniamino Cappelletti Montano, Alfonso Carriazo, Verónica Martín-Molina J. Geom. Phys. 73 (2013) 20–36
https://doi.org/10.1016/j.geomphys.2013.05.001
Optimal inequalities, contact δ-invariants and their applications
Bang-Yen Chen, Verónica Martín-Molina.
Bull. Malays. Math. Sci. Soc. (2) 36(2) (2013), 263–276
http://math.usm.my/bulletin/html/vol36_2_1.html
Generalized (κ,μ)-space forms
Alfonso Carriazo, Verónica Martín-Molina, Mukut M.Tripathi.
Mediterr. J. Math. 10 (2013), no. 1, 475-496
https://doi.org/10.1007/s00009-012-0196-2
Bochner and conformal flatness on normal complex contact metric manifolds.
David E. Blair, Verónica Martín-Molina
Ann. Global Anal. Geom. 39 (2011), no. 3, 249-258.
https://doi.org/10.1007/s10455-010-9232-2
Generalized (κ,μ) -space forms and D_a-homothetic deformations.
Alfonso Carriazo, Verónica Martín-Molina
Balkan J. Geom. Appl. 16 (2011), no. 1, 37-47.
http://www.mathem.pub.ro/bjga/v16n1/B16-1.htm
Paper about mathematics outreach (Artículo de divulgación)
Sophus Lie: a visionary mathematician (Spanish)
Verónica Martín, Juan Núñez, Ángel F. Tenorio
Bol. Asoc. Mat. Venez. 14 (2007), no. 1-2, 41-54.
http://www.emis.de/journals/BAMV/vol14.html
Research stays
Departimento di Matematica, Università di Bari "Aldo Moro", Italia (13/9/10-15/12/10)
Tema: Geometría Analítica y sus aplicaciones al estudio de las geodésicas (Analytic geometry and its applications to the study of geodesics)
Department of Mathematics, Faculty of Natural and Mathematical Sciences, King's College London, UK (12/9/11-15/12/11)
Tema: Acciones de grupos de Lie sobre variedades (Lie group actions on manifolds)
Departamento de Geometría y Topología, Facultad de Matemáticas, Universidad de Sevilla, España (02/03/13-06/04/13)
Tema: Geometría de variedades de contacto pseudo-métricas (geometry of contact pseudo-metric manifolds)
Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, Lecce, Italia (07/05/13-08/06/13)
Tema: Geometría de variedades de contacto pseudo-métricas, estructuras de paracontacto métrico en el fibrado tangente esférico, métricas g-naturales en el fibrado tangente y fibrado tangente esférico, variedades pasaSasakianas de curvatura phi-seccional constante (geometry of contact pseudo-metric manifolds, paracontact metric structures on the unit tangent sphere bundle, g-natural metrics on the tangent and unit tangent sphere bundles, paraSasakian manifolds of constant phi-sectional curvature)
Generalized
Alfonso Carriazo, Verónica Martín-Molina, Mukut M.Tripathi.
Mediterr. J. Math. 10 (2013), no. 1, 475-496
https://doi.org/10.1007/s00009-012-0196-2
Bochner and conformal flatness on normal complex contact metric manifolds.
David E. Blair, Verónica Martín-Molina
Ann. Global Anal. Geom. 39 (2011), no. 3, 249-258.
https://doi.org/10.1007/s10455-010-9232-2
Generalized
Alfonso Carriazo, Verónica Martín-Molina
Balkan J. Geom. Appl. 16 (2011), no. 1, 37-47.
http://www.mathem.pub.ro/bjga/v16n1/B16-1.htm
Paper about mathematics outreach (Artículo de divulgación)
Sophus Lie: a visionary mathematician (Spanish)
Verónica Martín, Juan Núñez, Ángel F. Tenorio
Bol. Asoc. Mat. Venez. 14 (2007), no. 1-2, 41-54.
http://www.emis.de/journals/BAMV/vol14.html
Research stays
Department of Mathematics, Michigan State University, USA (1/9/09-31/10/09)
Tema:Teoría de subvariedades y geometría de contacto (Submanifold theory and Contact geometry)
Tema:Teoría de subvariedades y geometría de contacto (Submanifold theory and Contact geometry)
Departimento di Matematica, Università di Bari "Aldo Moro", Italia (13/9/10-15/12/10)
Tema: Geometría Analítica y sus aplicaciones al estudio de las geodésicas (Analytic geometry and its applications to the study of geodesics)
Department of Mathematics, Faculty of Natural and Mathematical Sciences, King's College London, UK (12/9/11-15/12/11)
Tema: Acciones de grupos de Lie sobre variedades (Lie group actions on manifolds)
Departamento de Geometría y Topología, Facultad de Matemáticas, Universidad de Sevilla, España (02/03/13-06/04/13)
Tema: Geometría de variedades de contacto pseudo-métricas (geometry of contact pseudo-metric manifolds)
Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, Lecce, Italia (07/05/13-08/06/13)
Tema: Geometría de variedades de contacto pseudo-métricas, estructuras de paracontacto métrico en el fibrado tangente esférico, métricas g-naturales en el fibrado tangente y fibrado tangente esférico, variedades pasaSasakianas de curvatura phi-seccional constante (geometry of contact pseudo-metric manifolds, paracontact metric structures on the unit tangent sphere bundle, g-natural metrics on the tangent and unit tangent sphere bundles, paraSasakian manifolds of constant phi-sectional curvature)